The B Vitamins and Their Multilayered Importance In Human Physiology

The B Vitamins and Their Multilayered Importance In Human Physiology

Folate, Vitamin B12, Vitamin B6, Choline

B vitamins are a class of water-soluble vitamins that are essential to maintain health and to carry out a host of metabolic functions.   There are 8 different B vitamins that are necessary for several organs and systems to function optimally.  B vitamins are utilized for cellular functioning, carbohydrate metabolism and the production of red blood cells.  They are also needed for healthy skin and neurotransmitter formation.  Symptoms of B vitamin deficiency vary from fatigue to anemia, nervous system dysfunction, compromised immunity and skin issues.  While over consumption of B vitamins from food sources is quite rare and generally not worrisome, dangerously high intake of B vitamin through supplementation leads to hypervitaminosis B.  This condition comes with side effects that include liver problems, blurry vision, high blood sugar, and numbness. 

What Is Folate?

Folate is needed to produce healthy red blood cells; it reduces the risk of neural tube defects such as spina bifida and, together with vitamin B12 and vitamin C, is an important coenzyme in the synthesis of nucleic acids and the metabolism of amino acids.  Optimal folate intake helps in the prevention of folate deficiency anemia.

The Importance of B12

Vitamin B12 is an important factor for the formation of red blood cells, and it is essential in preventing megaloblastic anemia.  Vitamin B12 is important for DNA synthesis.  Cellular metabolism is dependent on this vitamin, which has a role in the metabolism of fatty acids as well as amino acid synthesis.  Vitamin B12 is also necessary for the absorption of folate, and it is necessary for conversion of carbohydrates into glucose.  Vitamin B12 also plays a role in white blood cell formation, affecting immune system function. 

What To Know About Vitamin B 6

Vitamin B6 (Pyridoxine) exists in various coenzyme forms (pyridoxal 5 phosphate (PLP) and Pyridoxamine 5 phosphate (PMP)).  It plays a role in over 100 enzyme reactions, and it is involved in the metabolism of protein, carbohydrates, and lipids.  Vitamin B6 is essential for brain development and for immune function.  It is vital to synthesize neurotransmitters and to ensure adequate levels of homocysteine.  It is also essential for gluconeogenesis, glycogenolysis, and hemoglobin formation.  Vitamin B6 works synergistically with folate and vitamin B12 to reduce homocysteine levels.  High level of homocysteine is a risk factor in heart disease.  While the mechanisms aren’t fully understood, it appears that high homocysteine levels can damage arteries, leading to atherosclerosis and blood clots. 

What You Need To Know About Choline

Choline is an organic, water-soluble compound similar to B vitamins.  It is manufactured in the liver, and it is also found in foods such as liver, muscle meat, fish, eggs, beans, wheat germs, and nuts.  Choline is essential in metabolism, and it is needed for cell membrane integrity.  It is important for DNA synthesis, cell signaling, fat transport and metabolism.  Choline is necessary to make acetylcholine, an important neurotransmitter; therefore, it is crucial for the nervous system.  Choline is a source of methyl groups and is needed to produce two major phospholipids (phosphatidylcholine and sphingomyelin) crucial to cell membranes. 

What is the RDA level for each of the vitamins? What is the upper limit for each of the vitamins and What are the signs or symptoms of deficiency and toxicity for each of the vitamins? 

The RDA for vitamin B6 varies depending on age, sex, and for women RDA changes also during pregnancy and breastfeeding.  RDA for babies from birth to six months is 0.1mg; it is 0.3mg for babies from 7 months to 1 year of age. From 1 to 3 years it is 0.5 mg, 4 to 8 years is 0.6 mg while 4 to 8 years 0.6 mg, 9-13 years is 1.0 mg.  RDA for males and females between 19 to 50 years is 1.3 mg.  RDA of vitamin B6 for males above 51 years is 1.7 mg and for females it is 1.4 mg. 

The RDA for vitamin B12 is dependent on age. The RDA for breastfeeding mothers is 2.8 mcg, while for pregnant teens and women it is 2.6 mcg.  Teens and adults are recommended to take 2.4 mg per day of vitamin B12.  The RDA for children is 1.2 mcg for the age group 4-8 years, and 1.8 mcg for 9 to 13 years.  Infants up to 6 months need 0.4 mcg of vitamin B12 per day; the recommendation for infants 7 to 12 months is 0.5 micrograms per day, and children between 1-3 years require 0.9 mcg per day.

The RDA for folate is also dependent on age.  Women and men above 19 years should take 400 mcg of dietary folate equivalents (DFE) per day.  The RDA for pregnant women is 600 mcg per day, while RDA for lactating women is 500 mcg.  The RDA for people who habitually consume alcohol is at 600 mcg. 

The Office of Dietary Supplements states that there is insufficient data to establish the RDA for choline; however, adequate intakes (AI) are available.  AI is defined as the “recommended average daily nutrient intake level based on approximations of observed mean nutrient intake by a group (or groups) of apparently healthy people that are assumed to be adequate” (Dietary Reference Intakes: applications in dietary assessment).  The AI for individuals above 19 years is 550 mg/day for males and 425 mg/day for females.  The AI for pregnant women is 450 mg/day, and for lactating women it is 550mg/day.  AI is used as a reference levels when there is not enough evidence to develop an RDA.  

Choline deficiency can damage the muscles, liver, and it is linked to the development of nonalcoholic fatty liver disease (NAFLD).  Most people in the US consume less than the daily requirement of choline; however, thanks to endogenous production of choline by the liver, deficiency in healthy and non pregnant individuals is rare.  High doses of choline can cause dizziness and can lower blood pressure.  Choline toxicity can also cause also vomiting, increased sweating, salivation, and it can cause fishy body odor.  

Vitamin B 12 deficiency causes fatigue, weakness, constipation, loss of appetite, weight loss, and megaloblastic anemia.  It also leads to numbness, balance problems, depression, dementia, and confusion.  Vitamin B12 toxicity is rare, and it generally manifests with diarrhea, itching, blood clots, numbness of the extremities, and allergic reactions.   

Excessive folate intake masks the symptoms of vitamin B 12 deficiency and can cause damage to the nervous system. Its deficiency mainly leads to folate deficiency anemia, diarrhea, gray hair, peptic ulcer, poor growth, glossitis, and ulcers in the mouth.

It is rare to have an isolated deficiency of vitamin B6.  While uncommon, vitamin B6 deficiency is associated with microcytic anemia, cheilosis, dermatitis, glossitis, depression, confusion, and a weakened immune system.  An excess of the vitamin B6 leads to sensory neuropathy, ataxia, skin lesions, photosensitivity, nausea, and heartburn. These signs and symptoms are dose-specific.

Where are these vitamins found in the diet and what may impede availability and absorption? How does the concept of food poverty impact a client’s ability to obtain these vitamins?

Vitamin B6 is found in a variety of foods, including salmon, beef, liver, pork, potatoes, bananas, and avocado.  Other sources include fortified cereals, poultry, pistachio nuts, and non-citrus fruits.

Beef liver is a great source of folate, and boiled spinach comes right behind.  Other good sources include broccoli, leafy green vegetables, peas, kidney beans, chickpeas, and fortified cereals.  Pregnant women should take folate supplements and consume foods high in folate to prevent neural tube defects.

The best sources of vitamin B12 are liver and clams.  Other good sources are meat, fish, milk, cheese, eggs, dairy, and fortified cereals. 

Dietary sources of choline include meat, poultry, fish, milk, eggs, gravies, salads, nuts and seeds, and wheat germ.

Several factors can hinder the absorption and availability of vitamins.  Various medications can affect the absorption of various vitamins like vitamin B6.  These medications include anti-seizure drugs, the bronchodilator theophylline, and antibiotics like cycloserine.  The mechanisms for drug-nutrient interactions vary as well.  For instance, cycloserine increases the urinary loss of pyridoxine.  Availability and absorption of vitamin B12 are also affected by various gastrointestinal conditions like ulcers, inflammatory bowel disease and other digestive disorders, surgical conditions like gastrostomy, and, of course, medications.  The medications include chloramphenicol, omeprazole, cimetidine, and metformin.  It is worth noting B vitamins are also best absorbed from food sources; however, folate supplementation is needed in pregnancy and some studies show that supplemental folate is better absorbed than dietary folate (85% bioavailability of supplemental compared to 50% from food sources).   It is important to identify factors that can affect the vitamins’ availability and to develop proper strategies that will ensure that our clients have optimal intake and absorption.  

What Happens When Food Poverty Is A Significant Component In Mal-nutrition?

Food poverty is the inability to access or purchase foods that make up a healthy diet.  In other words, food poverty reduces access to the healthy foods that provide an abundance of vitamins and minerals.  Food poverty is linked to malnutrition, obesity, vitamin deficiencies, weakened immune system and other diseases, and disordered eating (people living in food insecurity tend to eat even when not hungry, as a guard against food uncertainty).  Since food poverty translates to limited access to healthy foods, people affected by food poverty do not meet RDAs and AI of vitamins and minerals. 

References:

Stipanuk MH, Caudill MA, editors. Biochemical, physiological, and molecular aspects of human nutrition. 4th ed. St. Louis, Mo: Elsevier; 2019. 959 p.

Bjørndal B, Bruheim I, Lysne V, Ramsvik MS, Ueland PM, Nordrehaug JE, et al. Plasma choline, homocysteine and vitamin status in healthy adults supplemented with krill oil: a pilot study. Scandinavian Journal of Clinical and Laboratory Investigation. 2018 Nov 17;78(7–8):527–32.

Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy—a review. Nutrients. 2016 Feb;8(2):68.

Office of dietary supplements – choline [Internet]. [cited 2020 Nov 15]. Available from: https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/

Office of dietary supplements – vitamin b6 [Internet]. [cited 2020 Nov 15]. Available from: https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/

Office of dietary supplements – vitamin b12 [Internet]. [cited 2020 Nov 15]. Available from: https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/

Vitamins and minerals – B vitamins and folic acid [Internet]. nhs.uk. 2017 [cited 2020 Nov 15]. Available from: https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-b/


Sobczyńska-Malefora A, Harrington DJ. Laboratory assessment of folate (Vitamin b9) status. Journal of Clinical Pathology. 2018 Nov 1;71(11):949–56.

Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between malnutrition and poverty. Front Public Health [Internet]. 2020 [cited 2020 Nov 15];8. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2020.00453/full

Fibromyalgia: Conventional Treatments & Functional Medicine

Fibromyalgia: Conventional Treatments & Functional Medicine

Differences Between Conventional Medicine and Functional Medicine 

  Fibromyalgia is a syndrome that affects between 2% and 8% of the population (Clauw D. J., 2014). It is more prevalent in women than in men, and it presents with chronic pain that affects the musculoskeletal system, fatigue, sleep problems, mood disorders, memory issues and other symptoms (Bair & Krebs, 2020). Fibromyalgia is not an illness with objective markers, and its diagnosis is usually made by studying a patient’s history and symptoms and then excluding other diseases that cause chronic widespread pain (Häuser, 2016). According to Galvez-Sánchez & Reyes Del Paso (2020) this has historically created problems in the diagnosis, management, treatment, and even social recognition of the disease. Old diagnosing guidelines called for the examination of so-called tender points: these are specific points on the body that are tested for pain and/or tenderness. In order to be diagnosed with fibromyalgia, a patient had to respond positively for tenderness to 11 out of 18 points. This was an inaccurate method, as fibromyalgia symptoms change from day to day. Current diagnostic guidelines now include widespread pain on both sides of the body for a minimum of three months (Fibromyalgia: Understand How It’s Diagnosed, 2020). After diagnosis, the patient is generally referred to a specialist in rheumatology for further treatment. 

What Does The Data Reveal?

 A study published in 2005 in The Journal of Rheumatology concluded that fibromyalgia can manifest hand in hand with neurotransmitter and neuroendocrine dysfunction, namely, higher than normal levels of excitatory neurotransmitters (catecholamines, serotonin, acetylcholine and histamine), low levels of biogenic amines as well as imbalances of the hypothalamus-pituitary-adrenal axis (HPA) (Mease P., 2005). Despite these findings, conventional medicine does not test for those biomarkers; instead, it manages fibromyalgia with the use of antidepressants (tricyclic and selective serotonin reuptake inhibitors (SSRI)), anti-seizure medications, muscle relaxants, and nonsteroidal anti-inflammatory drugs (NSAIDS).  Other drugs prescribed include sedatives, norepinephrine/serotonin reuptake inhibitors, and experimental drugs. Exercise, acupuncture and massage are complementary alternative therapies that are often recommended in conjunction with medication (Chinn et al., 2016).    

Conventional Medicine’s Approach To Treatment

Conventional medicine has a reductionist approach to illnesses such as fibromyalgia, while functional medicine uses a holistic approach in the treatment of such conditions. It is frustrating to see such disparities. It is even more frustrating when there are numerous peer-reviewed studies that share important findings demonstrating that addressing the several underlying causes of fibromyalgia can bring this syndrome into remission. These findings have been reviewed, published and shared with the medical community, but conventional medicine is not yet using this knowledge to treat the root causes of the syndrome. The conventional medicine approach uses pharmaceutical drugs to manage symptoms;

this Band-Aid approach is not only unsustainable, it is also faulty. 

Functional Medicine’s Approach To Treatment

 Functional medicine recognizes fibromyalgia as a painful neuropathic pain syndrome that can have root causes in several systems. HPA imbalances, neurotransmitters dysfunction, endocrine issues, nutrient deficiencies, autoimmunity and stress can all play a role in fibromyalgia (Martínez-Lavín M., 2020). The functional medicine approach to treating fibromyalgia aims at finding the root causes of the disease and correcting them, while continuing to support the patient holistically through the use of targeted therapies as well as with complementary alternative therapies (CAM) like massage therapy, nutrient therapy, acupuncture, etc. (Pfalzgraf et al., 2020). 

Among the factors and conditions that are taken into consideration by functional medicine doctors when working with fibromyalgia patients are celiac disease, non-celiac gluten sensitivity, candida overgrowth, hypothyroidism, nutrient deficiencies, leaky gut and small intestine bacterial overgrowth, adrenal fatigue, mercury toxicity, and glutathione deficiency. While the research is still in its early stages, preliminary findings show that people affected by celiac disease and non-celiac gluten intolerance suffer from fatigue, musculoskeletal pain, and brain fog (Isasi et al., 2016). Several studies show that many patients affected by fibromyalgia, myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) also suffer from abdominal discomfort syndrome (ADS) and irritable bowel syndrome (IBS). A study from Maes et al. (2014) shows that the ME/CFS patients also presenting with ADS have higher than normal levels of “IgA and IgM responses to LPS or commensal bacteria” (Maes et al., 2014). Small intestine bacterial overgrowth and leaky gut are also associated with fibromyalgia. Treating the bacterial imbalance has been shown to ameliorate gastrointestinal and fibromyalgia symptoms (Logan & Beaulne, 2002).

 Hypothyroidism can cause secondary fibromyalgia (Corsalini et al., 2017); therefore, failure to test and to address thyroid function will perpetuate fibromyalgia symptoms. 

A Holistic Overview Of The Treatment OF Fibromyalgia

 The functional medicine approach also looks at nutrient status and possible deficiencies: a meta-analysis of 40 observational studies show that fibromyalgia sufferers have lower levels of vitamin D, vitamin B12, magnesium and vitamin E compared to a control group (Joustra et al., 2017) (Pagliai et al., 2020). Studies also show that they have significantly lower levels of glutathione compared to control (Shukla et al., 2020).

 The adrenal glands are our stress response system. Fibromyalgia patients are shown to have either hyper-cortisol or hypo-cortisol output, as well as HPA axis imbalances (Eller-Smith et al., 2018).

 There are other factors that are assessed by functional medicine doctors who work with fibromyalgia patients. While there I was not able to find peer reviewed studies on them, I was able to find quite a bit of anecdotal evidence online. According to Dr. Amy Myers, MD, factors to consider are exposure to mold, mercury toxicity, and MTHFR gene mutations. 

 Lastly, functional medicine also focuses on the mind-body connection when treating fibromyalgia: a systematic review of the Cochrane Central Register of Controlled Trials shows that mind-body therapy is effective in improving quality of life, pain management, and mood issues in fibromyalgia sufferers. Mind-body therapy uses techniques such as biofeedback, mindfulness, relaxation and movement therapy (Theadom et al., 2015). 

References:

Bair, M. J., & Krebs, E. E. (2020). Fibromyalgia. Annals of internal medicine, 172(5), ITC33–ITC48. https://doi.org/10.7326/AITC202003030

Chinn, S., Caldwell, W., & Gritsenko, K. (2016). Fibromyalgia Pathogenesis and Treatment Options Update. Current pain and headache reports, 20(4), 25. https://doi.org/10.1007/s11916-016-0556-x

Clauw D. J. (2014). Fibromyalgia: a clinical review. JAMA, 311(15), 1547–1555. https://doi.org/10.1001/jama.2014.3266

Corsalini, M., Daniela, D. V., Biagio, R., Gianluca, S., Alessandra, L., & Francesco, P. (2017). Evidence of Signs and Symptoms of Craniomandibular Disorders in Fibromyalgia Patients. The open dentistry journal, 11, 91–98. https://doi.org/10.2174/1874210601711010091

Eller-Smith, O. C., Nicol, A. L., & Christianson, J. A. (2018). Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Frontiers in cellular neuroscience, 12, 35. https://doi.org/10.3389/fncel.2018.00035

Fibromyalgia: Understand how it’s diagnosed. (2020, September 18). Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/fibromyalgia/in-depth/fibromyalgia-symptoms/art-20045401

Galvez-Sánchez, C. M., & Reyes Del Paso, G. A. (2020). Diagnostic Criteria for Fibromyalgia: Critical Review and Future Perspectives. Journal of clinical medicine, 9(4), 1219. https://doi.org/10.3390/jcm9041219

Häuser W. (2016). Fibromyalgiesyndrom Basiswissen, Diagnostik und Therapie [Fibromyalgia syndrome: Basic knowledge, diagnosis and treatment]. Medizinische Monatsschrift fur Pharmazeuten, 39(12), 504–511.

Isasi, C., Tejerina, E., & Morán, L. M. (2016). Non-celiac gluten sensitivity and rheumatic diseases. Reumatologia clinica, 12(1), 4–10. https://doi.org/10.1016/j.reuma.2015.03.001

Joustra, M. L., Minovic, I., Janssens, K., Bakker, S., & Rosmalen, J. (2017). Vitamin and mineral status in chronic fatigue syndrome and fibromyalgia syndrome: A systematic review and meta-analysis. PloS one, 12(4), e0176631. https://doi.org/10.1371/journal.pone.0176631

Logan, A. C., & Beaulne, T. M. (2002). The treatment of small intestinal bacterial overgrowth with enteric-coated peppermint oil: a case report. Alternative medicine review : a journal of clinical therapeutic, 7(5), 410–417. 

Lord, R.S., & Bralley J. A. (2012) Laboratory evaluations for integrative and functional medicine. 2nd edition. Metametrix.

Maes, M., Leunis, J. C., Geffard, M., & Berk, M. (2014). Evidence for the existence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome. Neuro endocrinology letters, 35(6), 445–453. 

Martínez-Lavín M. (2020). Holistic Treatment of Fibromyalgia Based on Physiopathology: An Expert Opinion. Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases, 26(5), 204–207. https://doi.org/10.1097/RHU.0000000000001455

Mease P. (2005). Fibromyalgia syndrome: review of clinical presentation, pathogenesis, outcome measures, and treatment. The Journal of rheumatology. Supplement, 75, 6–21. 

Pfalzgraf, A. R., Lobo, C. P., Giannetti, V., & Jones, K. D. (2020). Use of Complementary and Alternative Medicine in Fibromyalgia: Results of an Online Survey. Pain management nursing : official journal of the American Society of Pain Management Nurses, 21(6), 516–522. https://doi.org/10.1016/j.pmn.2020.07.003

Pagliai, G., Giangrandi, I., Dinu, M., Sofi, F., & Colombini, B. (2020). Nutritional Interventions in the Management of Fibromyalgia Syndrome. Nutrients, 12(9), 2525. https://doi.org/10.3390/nu12092525

Shukla, V., Kumar, D. S., Ali, M. A., Agarwal, S., & Khandpur, S. (2020). Nitric oxide, lipid peroxidation products, and antioxidants in primary fibromyalgia and correlation with disease severity. Journal of medical biochemistry, 39(2), 165–170. https://doi.org/10.2478/jomb-2019-0033

Theadom, A., Cropley, M., Smith, H. E., Feigin, V. L., & McPherson, K. (2015). Mind and body therapy for fibromyalgia. The Cochrane database of systematic reviews, 2015(4), CD001980. https://doi.org/10.1002/14651858.CD001980.pub3

Food & Nutrition Board Guidelines Explained

Food & Nutrition Board Guidelines Explained

The Recommended Dietary Allowances (RDAs) were first established in 1941 by the Food and Nutrition Board. At that time, nutrition science was still in its infancy: thiamin was the first vitamin to be isolated in 1926; the first Nobel Prize for vitamin discovery were awarded in 1928. The RDAs were developed to aid the American public in following a diet that would provide enough nutrients to prevent vitamin deficiencies. To keep up with the advancements in nutrition science, the RDAs have been updated every 5 years until the 10th and last edition was published in 1989. This final edition delivered recommendations for nutrient intake for protein, 13 vitamins, 12 minerals and 3 electrolytes; these recommendations were provided for 18 life stages and different groups based on gender, age and life stages (pregnancy and lactation) (Lee & Nieman, 2013). The RDAs guidelines have also been used for food labeling, food planning, dietary survey data and other purposes for which they were not originally intended.  

The biggest limitation of RDAs consisted in the fact that its dietary guidelines aimed at preventing nutrient-related diseases instead of obtaining and maintaining optimal health. For this reason, in the 1990s the RDAs guidelines were broadened and collected in what is known as the Dietary Reference Intakes (DRIs) discussed below.

Recommended Daily Allowances

The Dietary Guidelines are different than the RDAs in multiple ways: the RDAs give recommendations for 18 life stages and different groups based upon gender, age and life stages (pregnancy and lactation). The Dietary Guidelines has only one set of recommendations for all individuals over the age of 2 and therefore needs to work across a wide range of energy needs. Most Dietary Guidelines are given either as a percentage of total calories or as a recommendation for a nutrient in a certain amount for every 1,000 calories consumed. Another major difference between RDAs and Dietary Guidelines is that there is an RDA for every essential nutrient while the Dietary Guidelines only provide recommendations for those nutrients that are linked to diet-related chronic diseases. For example, the RDA for carbohydrates in adults is 130 grams, while the Dietary Guidelines for carbohydrates is 45-65% of total calories. When nutrition professionals assess a patient’s intake for carbohydrate they look at both references: the use RDAs to look for the amount needed to meet nutrient demands, and they also use the Dietary Guidelines to assess amounts of carbohydrates needed to reduce incidence of diet-related chronic disease. 

The Dietary Reference Intakes (DRIs) were first published in 1997 as the result of a collaboration between the Food and Nutrition Board and the Canadian Government. Canadian and American scientists worked together for over two years to bridge the gap between the information provided by the RDAs and the nutrition information the public needed and wanted. The initial report covered only 5 nutrients, but following reports spanning a decade were expanded to include guidelines on all vitamins and minerals, as well as macronutrients, hydration, fiber intake and exercise. The DRIs are updated as new information becomes available.

The DRIs are a collection of nutrient standards. They maintained the RDA’s focus on preventing nutrient deficiencies and added other standards: The Tolerable Upper Limit (UL) and the Acceptable Macronutrient Distribution Range (AMDR). The UL provides a standard for excess intake, while the AMDR provides a guidance on the percentage of calories from the different macronutrients that aligns with consuming adequate nutrient intake.

Dietary Guidelines

 The Dietary Guidelines for Americans were first published in 1980 and have been updated every 5 year since. The purpose of the Dietary Guidelines is to provide nutrition recommendations with a focus on preventing chronic disease and to promote healthy eating and exercise habits to “improve the health of our Nation’s current and future generations” (McGuire, 2011).

 The Dietary Guidelines are different than the RDAs in multiple ways: the RDAs give recommendations for 18 life stages and different groups based upon gender, age and life stages (pregnancy and lactation). The Dietary Guidelines has only one set of recommendations for all individuals over the age of 2 and therefore needs to work across a wide range of energy needs. Most Dietary Guidelines are given either as a percentage of total calories or as a recommendation for a nutrient in a certain amount for every 1,000 calories consumed. Another major difference between RDAs and Dietary Guidelines is that there is an RDA for every essential nutrient while the Dietary Guidelines only provide recommendations for those nutrients that are linked to diet-related chronic diseases. For example, the RDA for carbohydrates in adults is 130 grams, while the Dietary Guidelines for carbohydrates is 45-65% of total calories. When nutrition professionals assess a patient’s intake for carbohydrate they look at both references: the use RDAs to look for the amount needed to meet nutrient demands, and they also use the Dietary Guidelines to assess amounts of carbohydrates needed to reduce incidence of diet-related chronic disease.

Type 2 Diabetes

Type 2 Diabetes

Type 3 Diabetes As A Metabolic Condition

Type-2 diabetes is a chronic metabolic condition that affects an estimated 425 million people worldwide.  It is one of the biggest public health problems, and this already high number is estimated to surpass 600 million cases by 2045.  Type-2 diabetes is a disease of lifestyle that affects the way the body metabolizes glucose.  People who suffer from type-2 diabetes have either an inability to effectively utilize insulin or do not produce enough insulin to maintain a glucose level within the normal range of 70-100 mg/dL.  Type-2 diabetes is also known as diabetes mellitus type2, noninsulin-dependent diabetes mellitus (NIDDM), and adult-onset diabetes.  It used to be known as adult-onset diabetes because, formally, it was diagnosed in adults over the age of 45.  Nowadays, unfortunately, type-2 diabetes is more and more prevalent in children as well, and, according to the National Diabetes Statistics Report, 193,000 children and teenagers under the age of 20 have been diagnosed with diabetes in 2015 (type-1 and type-2). 

Healthy Blood Sugar Metabolism

In normal blood sugar metabolism, the beta cells of the pancreas produce and release insulin in response to the carbohydrate portion of a meal.  Insulin is responsible for shuttling glucose away from the bloodstream and into liver and muscle cells.  With repetitive excess glucose, cell receptor sites become resistant to insulin, causing glucose to remain in the bloodstream and build up to dangerously high levels.  Therefore, type-2 diabetes is linked to insulin resistance.  Additionally, as blood sugars remain elevated, the pancreas is forced to produce and release more insulin, which eventually puts a strain on the organ.  

How Is Type 2 Diabetes Different From Type 1 & Gestational Diabetes?

 There are two other types of diabetes: type-1 diabetes and gestational diabetes (GD).  Type-1 diabetes is an auto immune disorder in which the beta cells of the pancreas are attacked and destroyed by the immune system.  People with type-1 diabetes produce little to no insulin and become insulin-dependent for the rest of their lives.  The damage is irreversible.  Gestational diabetes only occurs in pregnancy.  It affects 2 in 10 pregnant women, and it is generally diagnosed between the 24th and the 28th week of gestation.  GD is caused by pregnancy hormones (namely, human placental lactogen) that cause the body to become insulin resistant. 

 It was originally thought that type-2 diabetes could not be cured and was genetic in nature. Medicine and nutrition are evolving sciences, and we now know that while there can be a genetic component to type-2 diabetes, it is mainly a disease of lifestyle.  Risk factors may include family history, race (Black, Hispanics, American Indians, Asians Americans are at higher risk), age, low activity level, fat distribution (accumulation of abdominal fat), and body weight.  Other medical conditions linked to developing type-2 diabetes are prediabetes, PCOS, and gestational diabetes.  Women with gestational diabetes are at higher risk of developing the developing type-2 diabetes in their lifetime. Also, women who deliver babies weighing more than 4 kg have a higher risk of developing type-2 diabetes. 

Symptoms Of Type 2 Diabetes

 Symptoms of type-2 diabetes are unintended weight loss, increased thirst, frequent urination, increased hunger, fatigue, blurred vision, slow-healing sores, frequent infection, darkening of skin usually in the areas of the armpits and neck.  Diabetes has serious long-term complication that are disabling and life-threatening.  They range from stroke to heart disease, to high blood pressure and atherosclerosis, neuropathy, kidney damage, slow healing and infections, skin conditions (including bacterial and fungal infection), hearing impairment, sleep apnea, eye damage and blindness.  In recent years, type-2 diabetes has been linked to increased risk of Alzheimer’s disease, which is now called by some type three diabetes. 

 Type-2 diabetes is diagnosed using the glycated hemoglobin (A1C) test.  This test indicates average glucose levels for the past three months.  Normal levels are below 5.7%.  A result between 5.7 and 6.4% is considered prediabetes.  A A1C result of 6.5% and above on two separate tests is considered diabetes.  When A1C is not available, physicians may use a random glucose test, a fasting glucose test, or a glucose tolerance test.  The latter is the preferred test used to check for gestational diabetes. 

How Does Conventional Medicine Approach Type 2 Diabetes?

Conventional medical treatment is based on the use of medication to improve blood sugar control.  Medications come with side effects and drug interactions.  Most medications for type-2 diabetes are oral drugs while a few are injectable.  Patients who are not able to manage their blood glucose through oral medications may require insulin injections as well.  There are several classes of diabetes medications: alpha-glucosidase inhibitors aid in the breakdown of starches and sugars. Biguanides decrease intestinal absorption of glucose, help muscles absorb glucose, and decrease the amount of glucose that the liver makes.  Metformin is a biguanide.  This medication comes with a host of side effect which affect the gastrointestinal tract, including abdominal pain and diarrhea.  Dopamine agonist is another type of medication, though its mechanism is still not understood.  Dipeptidyl Peptidase-4 inhibitors (DPP-4) help the pancreas make more insulin, and they also reduce blood sugar without causing hypoglycemia.  Glucagon-like peptide 1 receptor agonists (GLP-1) mimic the natural hormone incretin by stimulating the growth of beta cells and decreasing appetite.  GLP-1 receptor agonists also influence glucagon utilization.  Meglitinides help the body release insulin, though they may cause hypoglycemia and need to be prescribe with caution.  Sodium-glucose cotransporter-2 inhibitors (SGLT 2) prevent the kidneys from holding onto glucose and promote glucose excretion through urine.  Sulfonylureas stimulate pancreatic insulin production.  Thiazolidinediones help fat tissue utilize insulin more efficiently, and they decrease glucose in the liver.

 It is important to note that people suffering from type-2 diabetes also are often affected by other conditions like heart disease, high blood pressure or high cholesterol, and, therefore, the choice of medication(s) for treatment of type-2 diabetes must be based on the patient’s complete clinical picture.  For example, GLP-1 receptor agonists are usually preferred for diabetes patients affected by cardiovascular disease, heart failure or chronic kidney disease.  As stated above, these medications come with side effects.  They also cause depletion.  For example, medication like glyburide, glipizide, and chlorpropamide deplete CoQ10, while metformin depletes vitamin B12.  

Nutrients That May Be Linked To Type 2 Diabetes

 Nutrients that are linked to the development of type-2 diabetes, or are found in insufficient levels in people suffering from a type-2 diabetes, are vitamin A, magnesium, vitamin D and chromium.  Vitamin A boosts beta cell activity, and new research points to vitamin A insufficiency as playing a role in developing type-2 diabetes.  Low magnesium levels, both intracellular and extracellular, are generally associated with type-2 diabetes.  Insulin and glucose are important for magnesium metabolism, and magnesium has a key role in regulating insulin action, glucose uptake, and vascular tone.  Studies confirm that low vitamin D level is a risk factor for type-2 diabetes.  Low vitamin D is linked to beta cell disfunction, insulin resistance, and systemic inflammation all of which can contribute to type-2 diabetes.  Chromium is an essential trace mineral important for insulin regulation as well as for carbohydrate and lipid metabolism.  Supplementation with chromium picolinate has been shown to reduce insulin resistance and to lower risk of cardiovascular disease and type-2 diabetes.

What Happened To Diabetics Before Injectable Insulin?

 Before the advent of diabetes medication and injectable insulin the treatment of choice was a reduced carbohydrate diet.  For decades, after the introduction of drugs, the medical establishment would prescribe a low-fat diet comprised of at least 40% to 50% of carbohydrates. However, the past few years have seen a shift in the nutrition therapy treatment proposed by the medical community.  New evidence-based approaches are being developed, and different diets like the low carbohydrate diet and the Mediterranean diet are being researched.  The goal of nutrition therapy for the management of type-2 diabetes should focus on promoting healthy eating, stabilizing glucose levels, lowering lipid levels and blood pressure, and promoting weight loss. This needs to be done in a manner that feels achievable by the patient and can be sustainable in the long-term.  

In 2013, the American Diabetes Association created a list of recommendations and interventions focused on nutrition therapy which include reduced calorie diet, carbohydrate counting, simplified meal plans, fat intake, healthy food or exchange choices, behavioral strategies, and physical activity.  The most recent nutritional guidelines from the ADA conclude that there is no ideal macronutrient ratio for all people suffering from type-2 diabetes and that recommendations need to be individually tailored to each patient’s clinical picture and goal(s). The ADA recommends that patients receive individualized nutrition therapy and work with a nutritionist or registered dietitian specializing in nutrition therapy for diabetes.  This new approach has lead researchers to perform studies on the outcomes of several diets.  One of the most studied diets has been the Mediterranean diet. 

The Mediterranean Diet & Type 2 Diabetes

The Mediterranean diet is rich in functional foods that have active ingredients associated with the management and prevention of diseases like type-2 diabetes. Regular consumption of such functional foods has been associated with reduced cholesterol levels, lower inflammation, and enhanced insulin sensitivity, all factors necessary to prevent and manage type-2 diabetes. The functional foods that are key components of the Mediterranean diet are fruits, vegetables, oily fish, olive oil, tree nuts, and legumes. These foods contain phytochemicals that have been shown to have anti-inflammatory and antioxidant properties as well as beneficial effects on glucose metabolism and the cardiovascular system.  It is also interesting to note that exercise seems to enhance the beneficial effect of these functional foods.

Current research also points towards lower carbohydrate diets as being effective for the management of type-2 diabetes.  Low carbohydrate diets focus on high vegetable intake, moderate to high protein intake, moderate to high fat intake while restricting the intake of carbohydrates to fruits, whole grains and legumes. 

 Regardless of the type of diet prescribed, patients suffering from type-2 diabetes should practice calorie deficit through portion control to aid in weight loss which has been proven to be the best tool to manage hemoglobin A1C levels.

How Does Age Affect Risk Factor In The Development of Type 2 Diabetes?

Age is also an important risk factors for the development of diabetes, and one that we must take into consideration when choosing nutrition therapy for type-2 diabetics.  While childhood diabetes has reached epidemic proportions in this country, most people diagnosed with type-2 diabetes are diagnosed after the age of 45.  Once condition that is associated with age and affects an estimated 43% of men and 26% of women is sarcopenia.  Sarcopenia is characterized by a progressive loss of muscle mass and strength at the rate of 3% to 8% per decade.  Muscle tissue is an important site for glycogen storage, and it has an important role in glucose metabolism. Therefore, loss of muscle mass negatively impacts glucose management as sarcopenia greatly reduces glycogen storage capacity. 

High Protein Diets And Metabolic Disease

Historically, high protein diets have always been feared for patients with metabolic diseases because of the detrimental effect protein could have on kidney function.  A recent meta-analysis conducted by Devries et al. indicated that high protein diets (1.5 g per kilogram of body weight) does not negatively impact kidney function on glomerular filtration rate in adults without kidney disease.  In the past, it was also thought that excess protein would raise glucose levels through gluconeogenesis process.  However, these findings have been discredited by several studies which have proven that gluconeogenesis is a demand- driven process. 

New evidence advocates for consumption of higher protein by healthy older adults (1.0-1.2 g/kg/day) to preserve muscle mass and function. Older adults who are malnourished or at risk of malnutrition are recommended even higher amounts (1.2-1.5 g/kg/day).  Improving muscle mass and physical performance in older population will directly improve management of type-2 diabetes.  One study compared hypocaloric high protein diets versus high carbohydrate diets in older adults with sarcopenia.  The researchers found that both diet had similar effects on the total amount of weight lost, but the high protein diet improved insulin sensitivity and preserved lean body mass while the high carbohydrate diet did not.  Another study compared a high protein diet with a standard protein diet; the high protein diet induced a greater reduction in fat mass in men and women with type-2 diabetes. While glycemic control improved similarly in all groups, the change in insulin concentration was related to the extent of fat mass lost.  This suggests that the higher protein diet may have a more favorable effect on glycemic control than a standard protein diet.

While dietary changes are foundational to the management of type-2 diabetes, behavioral modification cannot be discounted.  It is human nature to be resistant to change, and we cannot underestimate the emotional and psychological importance of food. For these reasons, dietary modifications need to be sustainable in the long term.  Emphasis needs to be placed on patient education and support so that the new dietary habits are not abandoned at the first obstacle.  

 Nutritionists and dietitians working with diabetes patients need to work closely with their physicians as well so that medications can be promptly adjusted accordingly.  I worked extensively with type-2 diabetes clients, and I am always shocked by the number of people who come to me who are on several medications but do not test their blood sugar regularly.  In my practice I do not work with clients who refuse to wear a continuous glucose monitor or refuse to monitor their blood sugar levels several times a day via finger prick.  

Weight loss is important for overweight and obese people suffering from type-2 diabetes.  Losing weight improves glycemic control and decreases fasting blood sugar concentrations; it can improve insulin action and reduce the need for medication. A meta-analysis of gastric bypass patients showed that more than 2/3 of extremely obese patients with type-2 diabetes who underwent gastric bypass surgery had normalized glycemic control after losing at least 30% of their bodyweight.  Patients with severe pancreatic beta cell dysfunction may not be as responsive to weight loss as those with less extensive disease.

Complimentary and Alternative Medicine Treatment of Type 2 Diabetes

 Complementary and alternative medicine can be used successfully as adjuvant therapy for the treatment of diabetes. The most common used CAM for type-2 diabetes includes herbal medicine and nutriceuticals, acupuncture, chiropractic adjustments and meditation. Alpha-lipoic acid (ALA) is an antioxidant found in organ meats and dark leafy greens which can lower blood sugar and help prevent or reduce neuropathy.  Chromium is a trace mineral found in vegetables and whole grains that helps with glucose metabolism.  Cinnamon decreases glucose uptake from the G.I. tract, similar to alpha-glucosidase inhibitors medications.  Preliminary studies show that antioxidants found in foods like olive oil, dark chocolate and green tea can lower blood sugar and cholesterol, but more research is needed.  Ginseng has been used for hundreds of years by certain cultures as a blood sugar remedy.  Practitioners must be cautious when using herbs and supplements in clients who take diabetes medication: always check for drug-herb and drug-nutrient interactions before recommending CAM. 

 Acupuncture is helpful in reducing the pain associated with peripheral neuropathy.  Chiropractic care can help stabilize glucose levels by removing spine misalignment, which ameliorates central nervous system communication and can improve pancreatic function.  

  Lastly, there is increasing evidence that epigenetics plays a role in the metabolic programming of the fetus.  While more research is needed to fully understand epigenetic expression and its relation to the disease, we know that maternal and paternal nutrition can cause genetic dysregulation associated with several components that contribute to type-2 diabetes risk.  This might be the reason why children born to mothers affected by gestational diabetes have a higher incidence of type-2 diabetes later in life.

 While the medical underpinnings of diabetes are well understood, medications alone cannot reverse type-2 diabetes. Lifestyle and dietary changes should be the primary focus in addressing this metabolic disease.  CAM are crucial components in any treatment plan and should have greater prominence in how Western medicine approaches type-2 diabetes. 

References:

Type 2 diabetes – Symptoms and causes [Internet]. Mayo Clinic. [cited 2020 Dec 2]. Available from: https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193

Gray A, Threlkeld RJ. Nutritional recommendations for individuals with diabetes. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000 [cited 2020 Dec 1]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK279012/

Gestational diabetes: medlineplus genetics [Internet]. [cited 2020 Dec 3]. Available from: https://medlineplus.gov/genetics/condition/gestational-diabetes/

Ong TP, Ozanne SE. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Current Opinion in Clinical Nutrition and Metabolic Care. 2015 Jul;18(4):354–60.


Trasino SE, Benoit YD, Gudas LJ. Vitamin a deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem. 2014 Dec 1;jbc.M114.616763.

Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World J Diabetes. 2015 Aug 25;6(10):1152–7.

Xuan Y, Zhao H, Liu J-M. Vitamin D and type 2 diabetes mellitus (D2). J Diabetes. 2013 Sep;5(3):261–7.

A scientific review: the role of chromium in insulin resistance. Diabetes Educ. 2004;Suppl:2–14.

Biessels GJ, Kappelle LJ, Utrecht Diabetic Encephalopathy Study Group. Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans. 2005;33(Pt 5):1041–4.

Westman EC, Yancy WS Jr., Humphreys M. Dietary treatment of diabetes mellitus in the pre-insulin era (1914-1922). Perspect Biol Med2006;49:77 83. doi:10.1353/pbm.2006.0017 pmid:16489278

Wheeler ML, Dunbar SA, Jaacks LM, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care2012;35:434-45. doi:10.2337/dc11-2216 pmid:22275443

Franz MJ, Boucher JL, Evert AB. Evidence-based diabetes nutrition therapy recommendations are effective: the key is individualization. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:65.

Nguyen NT, Nguyen X-MT, Lane J, Wang P. Relationship between obesity and diabetes in a us adult population: findings from the national health and nutrition examination survey, 1999–2006. OBES SURG. 2011 Mar 1;21(3):351–5.

Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. The Lancet. 2014 Jun 7;383(9933):1999–2007.

Lindström J, Absetz P, Hemiö K, Peltomäki P, Peltonen M. Reducing the risk of type 2 diabetes with nutrition and physical activity – efficacy and implementation of lifestyle interventions in Finland. Public Health Nutrition. 2010 Jun;13(6A):993–9.

Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the american diabetes association, the north american association for the study of obesity, and the american society for clinical nutrition. Am J Clin Nutr. 2004 Aug 1;80(2):257–63.

Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the mediterranean diet: results of the predimed-reus nutrition intervention randomized trial. Diabetes Care. 2011 Jan 1;34(1):14–9.

Beaudry KM, Devries MC. Nutritional strategies to combat type 2 diabetes in aging adults: the importance of protein. Front Nutr [Internet]. 2019 [cited 2020 Dec 1];6. Available from: https://www.frontiersin.org/articles/10.3389/fnut.2019.00138/full

McCarty MF. Toward a wholly nutritional therapy for type 2 diabetes. Medical Hypotheses. 2000 Mar 1;54(3):483–7.

Forouhi NG, Misra A, Mohan V, Taylor R, Yancy W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ [Internet]. 2018 Jun 13 [cited 2020 Dec 1];361. Available from: https://www.bmj.com/content/361/bmj.k2234

Pharmavite. Common drug classes, drug-nutrient depletions, & drug-nutrient interactions. www.aafp.org/dam/AAFP/documents/about_us/sponsored_resources/Nature%20Made%20Handout.pdf. Accessed September 20, 2019.

Rhee TG, Westberg SM, Harris IM. Use of complementary and alternative medicine in older adults with diabetes. Diabetes Care [Internet]. 2018 Apr 10 [cited 2020 Dec 2]; Available from: https://care.diabetesjournals.org/content/early/2018/04/10/dc17-0682

Complementary and alternative medicine for diabetes – health encyclopedia – university of rochester medical center [Internet]. [cited 2020 Dec 1]. Available from: https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=134&ContentID=166

Grundy SM. Dietary therapy in diabetes mellitus. Is there a single best diet? Diabetes Care. 1991 Sep;14(9):796–801.

Alkhatib A, Tsang C, Tiss A, Bahorun T, Arefanian H, Barake R, et al. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients [Internet]. 2017 Dec 1 [cited 2020 Dec 1];9(12). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748760/

Carbohydrates Have Infiltrated Cultural Norms For How We Eat Today

Carbohydrates Have Infiltrated Cultural Norms For How We Eat Today

Carbohydrates are an important macronutrient and a significant source of energy in the diets of multiple populations across the globe. 

Carbohydrate intake over the past 75-100 years has varied greatly from region to region, and there is huge disparity in data between developed and developing countries.  In the western world carbohydrate processing and consumption has drastically changed during the past 100 years.  During this time, there has been an overwhelming increase in chronic disease and diseases of lifestyle.

According to the FAO, in the past century, starch consumption has declined in western countries while it has been steady or increasing in developing countries.  In the United States, 42% of energy is provided by low-quality carbohydrates coming from refined grains, sugar (especially high fructose corn syrup), and some starchy vegetables.  Unhealthy diet and lack of exercise are the primary causes of obesity, which in our country has gone from 14.5% to 30.9% during 1971-2000. 

What Is The History Behind Our Current Cultural Consumption Of Carbohydrates?

But how did we get to this?  The answer is in the changes in farming and food processing that have taken place in approximately the past 80 years.  We have switched from natural farming, which was based on crop rotation and soil fertilization that depended on the use of crop leftovers and manure to industrial and scientific farming.  This change has grossly depleted our land, yielding impoverished crops.  The past century has also seen changes in food processing with the advent of the food revolution that followed World War II.  And while the food revolution “liberated 1950s housewives”, it has brought about a decrease in quality carbohydrates associated with the rise of many chronic and degenerative disease.

Carbohydrate consumption seems to have increased in the past few years, with bread and breakfast cereals forming a large part of modern western diets.  The percentage of carbohydrates consumed is high, but the nutrient content of our diet has gone down due to impoverished soil, modern farming techniques and food processing.  

Available data shows that carbohydrate consumption in developing countries contributes to 60-70 percent total energy (Shan et al., 2019).  There is increasing evidence that carbohydrate consumption patterns in western countries are also growing, and it is believed that percentages will soon be close to that of developing countries.  Despite this trend, many North Americans have an increasingly negative perception of carbohydrates.  This is particularly shown by the low carb diets that have been popular in the past few decades, starting with the Atkins Diet.  Dr. Atkins published his first book, “Dr. Atkins’ Diet Revolution”, in 1972, and since then, several dietary approached have focused on limiting, or at least controlling, carbohydrate intake: from the Zone diet, to South Beach, to the ketogenic, the primal and the paleo diet.  

Childhood Obesity and Consumption Of Carbohydrates

As far as childhood nutrition is concerned, the past 70 years has seen a reduction in caloric intake, but an increase in body weight and childhood obesity.  According to the data, there has been a 19% reduction in calorie intake in 50 years for boys, and 29% reduction for girls, but sugar consumption has increased.  Fewer overall calories paired with increasing consumption of sugars means that the diet of our children is very low in nutrient-dense food.  Food quality in school diets all over the country has also declined over the past 40 years.  We should not be surprised to see that iron deficiency is the most common deficiency in our kids.  It should not surprise us to learn that nutrient deficiency in our children is rampant and that our country ranks #39 in the world on the “child flourishing index”. 

References:

Cassidy, C.M., “Nutrition and Health in Agriculturalists and Hunter-Gatherers,” Nutrtional Anthropology, Jerome, Norge W., Randy F. Kandel and Frettel H. Pelto, editors, Pleasantville, New York, pp. 117-179, (1980).

Food Agricultural Organization (2020). Global trends in production and consumption of carbohydrate foods. Retrieved 27 October 2020, from http://www.fao.org/3/W8079E/w8079e0g.htm.

Shan, Z., Rehm, C. D., Rogers, G., Ruan, M., Wang, D. D., Hu, F. B., … & Bhupathiraju, S. N. (2019). Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. Jama322(12), 1178-1187.

Trends in Intake of Energy and Macronutrients — United States, 1971–2000 [Internet]. [cited 2020 Oct 23]. Available from: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5304a3.htm

30 Interesting Facts About The Green Revolution, A New Age For Agriculture [Internet]. Facts.net. 2020 [cited 2020 Oct 28]. Available from: https://facts.net/science/technology/green-revolution-facts


How Highly Processed Foods Liberated 1950s Housewives [Internet]. National Women’s History Museum. [cited 2020 Oct 28]. Available from: https://www.womenshistory.org/articles/how-highly-processed-foods-liberated-1950s-housewives

Problems and Risks Arise When Defining The Terms Of A Healthy Body Size

Problems and Risks Arise When Defining The Terms Of A Healthy Body Size

The ideal body weight, IBW, is the optimal weight based on gender and height.  The ideal weight for a woman my height, 5’ 3”, is 104 to 140 pounds.  Unfortunately, ideal body weight is an incomplete measurement and does not necessarily reflect the health of a person.  Height and gender are the primary factors determining ideal body weight, and some calculators take age into consideration. However, build, muscular development, and body fat percentage are not taken into account.  Because of this, many athletes and fit individuals may be considered overweight based on the ideal body weight, while so-called skinny fat people may be well within their ideal body weight numbers. 

The Ideal Healthy Body Has Little To Do With The Pounds Displayed On The Scale

When working with clients, I encourage them to ditch the scale and measurements like IBW and to focus instead on body composition, inches lost instead of pounds lost, and, if they really want to explore body composition and have some money to spend, I recommend utilizing tools like Dexa body composition scan and whole body phethysmography. 

Excess body weight and body fat have a negative impact on health, and they come with numerous health risks, from type 2 diabetes to sleep apnea.  One of the systems that is negatively impacted by obesity and being overweight is the cardiovascular system.   Excess body fat is a major contributor to hypertension, which is the number-one cause of stroke.  It is also harmful to the kidneys.  People who are overweight or obese are also at higher risk for chronic inflammation and diseases of infertility like polycystic ovarian syndrome.  

Being overweight or obese is also linked to at least 13 different types of cancers (including breast, thyroid, uterus and ovaries, as well as colon and rectum cancer).  While the exact mechanisms aren’t clear, some possible ways in which excess body fat contributes to cancer concern DNA damage resulting from chronic inflammation.   The estrogenic effect of fat tissue most likely increases risk of endometrial, breast, ovarian and uterine cancer.  Obesity is also linked to high blood levels of insulin and IGF-1, which promote tumor development by inhibiting programmed cell death.  Fat cells also produce the hormones adipokines, which have the ability to stimulate or hinder cell growth.  It goes without saying that maintaining a healthy body weight is foundational for cancer prevention. 

The Mediterranean Diet And Healthy Body Size

The Mediterranean diet is touted as one of the healthiest of the planet.  There is not one Mediterranean diet but several variations, depend on the region.  While different Mediterranean countries eat different foods, there are staples consumed throughout the Mediterranean, from Italy to Greece to Spain: fresh seasonal vegetables, fish, lamb, nuts, legumes, herbs and spices, some nuts and seeds, and our stars: olives and olive oil.  The Mediterranean diets avoid added sugars, highly processed foods, trans-fats, and refined vegetable oils.  Water is the beverage of choice; coffee and teas are widely consumed, and wine is also included in moderation.  

The Mediterranean diet is rich in fiber and healthy fats, and it is the diet of choice for heart health.  Studies show that it improves lipid profiles, decreases lipid oxidation and reduces risk of thrombosis. 

The Paleolithic Diet And Reaching Ideal Body Composition

The Paleolithic diet focuses on the foods eaten by our ancestors during the Paleolithic era, when humans were hunter-gatherers.  While there are several variants of the diet, the Paleolithic diet (or “paleo”) removes sugar, processed foods, vegetable oils, trans-fats, legumes and grains.  It includes meat, poultry, fish, vegetables and fruit, nuts and seeds. Some variations incorporate dairy.  Potatoes were initially excluded, but in recent years they have been added to the list of allowed foods.  The paleo diet therefore removes many inflammatory foods (processed foods, trans-fats), as well as foods that trigger food sensitivities (gluten and dairy).  A 2009 study showed that the Paleolithic diet was superior to the diabetes diet in managing cardiovascular risk factor in patients with type 2 diabetes.  Other studies show improvement in serum biomarkers for cardiovascular disease.

Paleolithic Diet Versus Mediterranean Diet

While both diets are beneficial for cardiovascular disease, my preference would be to start a client on the Paleo diet.  I like using the paleo diet as an elimination diet.  Usually, after an initial phase (lasting 1 to 2 months depending on the client), I carefully and slowly reintroduce foods allowed in the Mediterranean diet.  This allows added variety which can help stave off boredom which is extremely important for compliance.  Ultimately, the choice will be the client’s.  It would be unwise to recommend a Paleo diet to a client who is not likely to comply with such restrictive way of eating.  In my practice, clients are active participants in setting goals and how to reach them.

References:

Ortega‐Loubon, C., Fernández‐Molina, M., Singh, G., & Correa, R. (2019). Obesity and its cardiovascular effects. Diabetes/metabolism research and reviews35(4), e3135.

Peterson, C. M., Thomas, D. M., Blackburn, G. L., & Heymsfield, S. B. (2016). The universal equation for estimating ideal body weight and body weight at any BMI. The American journal of clinical nutrition103(5), 1197-1203.

Obesity and Cancer Fact Sheet – National Cancer Institute [Internet]. 2017 [cited 2020 Nov 2]. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet

Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16(2):111–7.

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., … & Djousse, L. (2020). Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, E139-E596.

Mediterranean diet for heart health [Internet]. Mayo Clinic. [cited 2020 Nov 2]. Available from: https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/mediterranean-diet/art-20047801

Jönsson T, Granfeldt Y, Ahrén B, Branell U-C, Pålsson G, Hansson A, et al. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009 Jul 16;8:35.

Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gómez AL, Scheett TP, et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 2002 Jul;132(7):1879–85.

This website collects cookies. Please read our Privacy Policy to review the updates about which cookies we use and what information we collect on our site. By continuing to use this site, you are agreeing to our updated privacy policy.